作者
Sarah M Assmann, Jo Ann Snyder, Yuh‐Ru Julie Lee
发表日期
2000/4
期刊
Plant, Cell & Environment
卷号
23
期号
4
页码范围
387-395
出版商
Blackwell Science Ltd
简介
In most plant species, a decrease in atmospheric humidity at the leaf surface triggers a decrease in stomatal conductance. While guard cells appear to respond to humidity‐induced changes in transpiration rate, as opposed to relative humidity or vapour pressure difference, the underlying cellular mechanisms for this response remain unknown. In the present set of experiments, abscisic acid (ABA)‐deficient (aba1) and ABA‐insensitive (abi1‐1 and abi2‐1) mutants of Arabidopsis thaliana were used to test the hypothesis that the humidity signal is transduced by changes in the flux or concentration of ABA delivered to the stomatal complex in the transpiration stream. In gas exchange experiments, stomatal conductance was as sensitive to changes in vapour pressure difference in aba1, abi1‐1 and abi2‐1 mutant plants as in wild‐type plants. These experiments appear to rule out an obligate role for either the …
引用总数
20012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202431078757456431661379914510733