作者
Hisashi Anbutsu, Minoru Moriyama, Naruo Nikoh, Takahiro Hosokawa, Ryo Futahashi, Masahiko Tanahashi, Xian-Ying Meng, Takashi Kuriwada, Naoki Mori, Kenshiro Oshima, Masahira Hattori, Manabu Fujie, Noriyuki Satoh, Taro Maeda, Shuji Shigenobu, Ryuichi Koga, Takema Fukatsu
发表日期
2017/10/3
期刊
Proceedings of the National Academy of Sciences
卷号
114
期号
40
页码范围
E8382-E8391
出版商
National Academy of Sciences
简介
Beetles, representing the majority of the insect species diversity, are characterized by thick and hard cuticle, which plays important roles for their environmental adaptation and underpins their inordinate diversity and prosperity. Here, we report a bacterial endosymbiont extremely specialized for sustaining beetle’s cuticle formation. Many weevils are associated with a γ-proteobacterial endosymbiont lineage Nardonella, whose evolutionary origin is estimated as older than 100 million years, but its functional aspect has been elusive. Sequencing of Nardonella genomes from diverse weevils unveiled drastic size reduction to 0.2 Mb, in which minimal complete gene sets for bacterial replication, transcription, and translation were present but almost all of the other metabolic pathway genes were missing. Notably, the only metabolic pathway retained in the Nardonella genomes was the tyrosine synthesis pathway …
引用总数
20172018201920202021202220232024118132724283017
学术搜索中的文章
H Anbutsu, M Moriyama, N Nikoh, T Hosokawa… - Proceedings of the National Academy of Sciences, 2017