作者
Himabindu Kudapa, Arindam Ghatak, Rutwik Barmukh, Palak Chaturvedi, Aamir Khan, Sandip Kale, Lena Fragner, Annapurna Chitikineni, Wolfram Weckwerth, Rajeev K Varshney
发表日期
2024/3
期刊
The plant genome
卷号
17
期号
1
页码范围
e20337
简介
Drought is one of the major constraints limiting chickpea productivity. To unravel complex mechanisms regulating drought response in chickpea, we generated transcriptomics, proteomics, and metabolomics datasets from root tissues of four contrasting drought‐responsive chickpea genotypes: ICC 4958, JG 11, and JG 11+ (drought‐tolerant), and ICC 1882 (drought‐sensitive) under control and drought stress conditions. Integration of transcriptomics and proteomics data identified enriched hub proteins encoding isoflavone 4′‐O‐methyltransferase, UDP‐d‐glucose/UDP‐d‐galactose 4‐epimerase, and delta‐1‐pyrroline‐5‐carboxylate synthetase. These proteins highlighted the involvement of pathways such as antibiotic biosynthesis, galactose metabolism, and isoflavonoid biosynthesis in activating drought stress response mechanisms. Subsequently, the integration of metabolomics data identified six metabolites …
引用总数