作者
Qin Peng, Zhiwen Wang, Pengfei Liu, Yinping Liang, Zhenzhen Zhao, Wenhui Li, Xili Liu, Ye Xia
发表日期
2020/2/12
期刊
International Journal of Molecular Sciences
卷号
21
期号
4
页码范围
1223
出版商
MDPI
简介
Oxathiapiprolin was developed as a specific plant pathogenic oomycete inhibitor, previously shown to have highly curative and protective activities against the pepper Phytophthora blight disease under field and greenhouse tests. Therefore, it was hypothesized that oxathiapiprolin might potentially activate the plant disease resistance against pathogen infections. This study investigated the potential and related mechanism of oxathiapiprolin to activate the plant disease resistance using the bacterium Pseudomonas syringae pv tomato (Pst) and plant Arabidopsis interaction as the targeted system. Our results showed that oxathiapiprolin could activate the plant disease resistance against Pst DC3000, a non-target pathogen of oxathiapiprolin, in Arabidopsis, tobacco, and tomato plants. Our results also showed the enhanced callose deposition and H2O2 accumulation in the oxathiapiprolin-treated Arabidopsis under the induction of flg22 as the pathogen-associated molecular pattern (PAMP) treatment. Furthermore, increased levels of free salicylic acid (SA) and jasmonic acid (JA) were detected in the oxathiapiprolin-treated Arabidopsis plants compared to the mock-treated ones under the challenge of Pst DC3000. Besides, the gene expression results confirmed that at 24 h after the infiltration with Pst DC3000, the oxathiapiprolin-treated Arabidopsis plants had upregulated expression levels of the respiratory burst oxidase homolog D (RBOHD), JA-responsive gene (PDF1.2), and SA-responsive genes (PR1, PR2, and PR5) compared to the control. Taken together, oxathiapiprolin is identified as a novel chemical inducer which activates the plant …
引用总数
20212022202320243442
学术搜索中的文章
Q Peng, Z Wang, P Liu, Y Liang, Z Zhao, W Li, X Liu… - International Journal of Molecular Sciences, 2020