作者
Chwan-Li Shen, Sivapriya Ramamoorthy, Gurvinder Kaur, Jannette M Dufour, Rui Wang, Huanbiao Mo, Bruce A Watkins
发表日期
2021/4/13
期刊
Nutrients
卷号
13
期号
4
页码范围
1267
出版商
MDPI
简介
Obesity and its related complications are a world-wide health problem. Dietary tocotrienols (TT) have been shown to improve obesity-associated metabolic disorders, such as hypercholesterolemia, hyperglycemia, and gut dysbiosis. This study examined the hypothesis that the antioxidant capacity of TT alters metabolites of oxidative stress and improves systemic metabolism. C57BL/6J mice were fed either a high-fat diet (HFD control) or HFD supplemented with 800 mg annatto-extracted TT/kg (HFD+TT800) for 14 weeks. Sera from obese mice were examined by non-targeted metabolite analysis using UHPLC/MS. Compared to the HFD group, the HFD+TT800 group had higher levels of serum metabolites, essential amino acids (lysine and methionine), sphingomyelins, phosphatidylcholine, lysophospholipids, and vitamins (pantothenate, pyridoxamine, pyridoxal, and retinol). TT-treated mice had lowered levels of serum metabolites, dicarboxylic fatty acids, and inflammatory/oxidative stress markers (trimethylamine N-oxide, kynurenate, 12,13-DiHOME, and 13-HODE + 9-HODE) compared to the control. The results suggest that TT supplementation lowered inflammation and oxidative stress (oxidized glutathione and GSH/GSSH) and improved macronutrient metabolism (carbohydrates) in obese mice. Thus, TT actions on metabolites were beneficial in reducing obesity-associated hypercholesterolemia/hyperglycemia. The effects of a non-toxic dose of TT in mice support the potential for clinical applications in obesity and metabolic disease.
引用总数
20212022202320242432