作者
Yashika Bansal, Abdul Mujib, Jyoti Mamgain, Shubham Kumar, Yaser Hassan Dewir, Katalin Magyar-Tábori
发表日期
2024/2/15
期刊
Sustainability
卷号
16
期号
4
页码范围
1613
出版商
MDPI
简介
Harsh climates, i.e., drought, extreme temperatures, and toxic gases, pose issues to agriculture by altering plants’ growth and yield. Biotechnology with biochemical defense approaches is beneficial for generating new plants/varieties with extra resilience to adverse conditions. In response to stress, cultures show an enriched level of secondary metabolite synthesis. Here, an efficient in vitro propagation method using axillary shoot proliferation, along with callus formation, was established in Glycyrrhiza glabra L. The phytochemical composition of in vitro and in vivo grown tissues was analyzed using a gas chromatography–mass spectrometry (GC–MS) technique, and the biochemical attributes were measured and compared in different investigated tissues. Callus formation from root explants was achieved with a frequency of 88.89% on MS medium containing 2.0 mg/L BAP and 0.5 mg/L 2,4-D. Axillary shoot proliferation was obtained from dormant buds when cultured onto MS supplemented with BAP alone, or in combination with, IAA. The maximum shoot proliferation (94.44%) was recorded on MS with 1.0 mg/L BAP with an average shoot length of 10.5 cm. The regenerated shoots were subcultured and transferred to the root induction medium, supplemented with various concentrations of IAA/IBA, wherein 2.0 mg/L IBA resulted in the best rooting frequency (88.89%). The GC–MS-based phytocompounds analysis of the methanolic extracts of root-derived callus and in vivo- and in vitro- grown root tissues was conducted. These samples revealed the presence of more than 35 therapeutically important bioactive compounds, such as methylglabridin …
引用总数