作者
Marianna Ranieri, Kamyar Zahedi, Grazia Tamma, Mariangela Centrone, Annarita Di Mise, Manoocher Soleimani, Giovanna Valenti
发表日期
2018
期刊
The FASEB Journal
页码范围
fj201700412RR
简介
High concentrations of urinary calcium counteract vasopressin action via the activation of the calcium-sensing receptor (CaSR) that is expressed in the luminal membrane of collecting duct cells, which impairs the trafficking of aquaporin-2 (AQP2). Pendrin/NaCl cotransporter double-knockout (dKO) mice display significant calcium wasting and develop severe volume depletion, despite increased circulating vasopressin levels. We hypothesized that the CaSR-mediated impairment of AQP2 expression/trafficking underlies vasopressin resistance in dKO mice. Compared with wild-type mice, in renal inner medulla, dKO mice had reduced total AQP2 sensitive to proteasome inhibitors, higher levels of AQP2-pS261, ubiquitinated AQP2, and p38-MAPK, an enzyme that is activated by CaSR signaling and known to phosphorylate AQP2 at Ser261. CaSR inhibition with the calcilytic NPS2143 reversed these effects, which indicates that CaSR mediates the up-regulation of AQP2-pS261, ubiquitination, and degradation. Of note, dKO mice demonstrated significantly higher AQP2-targeting miRNA-137 that was reduced upon CaSR inhibition, supporting a critical role for CaSR in the down-regulation of AQP2 expression. Our data indicate that CaSR signaling reduces AQP2 abundance both via AQP2-targeting miRNA-137 and the p38-MAPK/AQP2-pS261/ubiquitination/proteasomal axis. These effects may contribute to the reduced renal concentrating ability that has been observed in dKO mice and underscore a physiologic mechanism of the CaSR-dependent regulation of AQP2 abundance via a novel microRNA pathway.-Ranieri, M., Zahedi, K., Tamma, G …
引用总数
20182019202020212022202320242754734