作者
Lindsey H Forbes
发表日期
2018/1/16
机构
University of St Andrews
简介
Repair of the adult mammalian spinal cord is prohibited by several extrinsic and intrinsic factors. As the CNS matures, growth-promoting proteins such as integrins are developmentally downregulated resulting in a reduced capacity for axonal outgrowth. Integrins are heterodimeric receptors involved in cell-cell and cell-matrix interactions. Specifically, within mature corticospinal tract (CST) axons, integrins are not transported into the axonal compartment. One integrin heterodimer, α9β1, is of particular interest for its ability to promote neurite outgrowth when bound to a component of the injury-induced milieu, tenascin-C. This project aimed to increase integrin expression within the CNS using induced pluripotent stem cell-derived human neural progenitor cells (iPSC-hNPCs). Using immunocytochemistry and western blotting, endogenous integrin expression within iPSC-hNPCs was determined. In addition, overexpression of α9 integrin was achieved using transfection and lentiviral transduction. The capacity of wild type (WT) and α9-hNPCs to extend neurites on tenascin-C was assessed using neurite outgrowth assays. Results revealed increasing α9 integrin expression in hNPCs significantly promoted neurite outgrowth when cultured on tenascin-C. Interestingly, increasing the concentration of human tenascin-C, resulted in increasingly longer neurites from WT hNPCs suggesting hNPCs could actively upregulate integrin expression. Subsequently, WT and α9-hNPCs were transplanted into layer V of the neonatal rat sensorimotor cortex, which projects to the CST. WT and α9-hNPCs survived up to 8 weeks post-transplantation and produced …