作者
Suman Bhowmick, Megan Fritz, Rebecca Lee Smith
发表日期
2023/10/9
期刊
arXiv preprint arXiv:2310.05875
简介
West Nile virus (WNV) is prevalent in the United States but it shows considerable divergence in transmission patterns and spatio-temporal intensity.It is to be noted that the mechanism that drives the transmission potential of WNV is described by the abilities of host species to maintain and disseminate the pathogens pertinent with different eco-epidemiological factors that have an influence on the contact rates amongst the interacting species.There is growing evidence that several vectors exhibit strong feeding preferences towards different host communities.We construct a process based weather driven ordinary differential equation (ODE) model to understand the impact of one vector species Culex pipiens, preferred avian and non-preferred human hosts and compared it surveillance data for the Culex pipiens complex collected in Cook County, Illinois, USA.In our mechanistic model, we also demonstrate that adulticide treatments produced significant reductions in the Culex pipiens population.We take into account the feeding index that can be described as the ratio between observed frequency of mosquitoes feeding on one host compared to another host, divided by the expected frequency of mosquitoes feeding on these two hosts based on the presence of the particular hosts to develop this transmission model for WNV. Our findings demonstrate that the interplay between the feeding index and mosquito abatement strategy is rather a complex phenomenon and it induces a heterogeneous contact rates that should be included while modelling multi-host, multi-vector transmission model.
学术搜索中的文章
S Bhowmick, M Fritz, RL Smith - arXiv preprint arXiv:2310.05875, 2023