作者
Mengmeng Xu, Qi Meng, Song Zhu, Ruipeng Yu, Lei Chen, Guiyang Shi, Ka-Hing Wong, Daming Fan, Zhongyang Ding
发表日期
2024/6/8
期刊
Journal of Fungi
卷号
10
期号
6
页码范围
415
出版商
MDPI
简介
Background
Selenium (Se) pollution poses serious threats to terrestrial ecosystems. Mushrooms are important sources of Se with the potential for bioremediation. Pre-eminent Se resources must possess the ability to tolerate high levels of Se. To obtain Se-accumulating fungi, we isolated selenite-tolerance-enhanced Ganoderma lucidum JNUSE-200 through adaptive evolution.
Methods
The molecular mechanism responsible for selenite tolerance and accumulation was explored in G. lucidum JNUSE-200 by comparing it with the original strain, G. lucidum CGMCC 5.26, using a combination of physiological and transcriptomic approaches.
Results
G. lucidum JNUSE-200 demonstrated tolerance to 200 mg/kg selenite in liquid culture and exhibited normal growth, whereas G. lucidum CGMCC 5.26 experienced reduced growth, red coloration, and an unpleasant odor as a result of exposure to selenite at the same concentration. In this study, G. lucidum JNUSE-200 developed a triple defense mechanism against high-level selenite toxicity, and the key genes responsible for improved selenite tolerance were identified.
Conclusions
The present study offers novel insights into the molecular responses of fungi towards selenite, providing theoretical guidance for the breeding and cultivation of Se-accumulating varieties. Moreover, it significantly enhances the capacity of the bio-manufacturing industry and contributes to the development of beneficial applications in environmental biotechnology through fungal selenite transformation bioprocesses.
学术搜索中的文章