作者
Ankita Nachankar, Takahiro Oike, Hirofumi Hanaoka, Ayaka Kanai, Hiro Sato, Yukari Yoshida, Hideru Obinata, Makoto Sakai, Naoto Osu, Yuka Hirota, Akihisa Takahashi, Atsushi Shibata, Tatsuya Ohno
发表日期
2021/12/7
期刊
Cancers
卷号
13
期号
24
页码范围
6159
出版商
MDPI
简介
Simple Summary
Carbon ion radiotherapy is an emerging cancer treatment modality that has a greater therapeutic window than conventional photon radiotherapy. To maximize the efficacy of this extremely scarce medical resource, it is important to identify predictive biomarkers of higher carbon ion relative biological effectiveness (RBE) over photons. Here we show that the carbon ion RBE in human cancer cells correlates with the cellular uptake of 64Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone) (64Cu-ATSM), a potential radioligand that reflects an over-reduced intracellular environment. High RBE/64Cu-ATSM cells show greater steady-state levels of antioxidant proteins and increased capacity to scavenge reactive oxygen species in response to X-rays than low RBE/64Cu-ATSM counterparts. These data suggest that the cellular antioxidant activity is a possible determinant of carbon ion RBE predictable by 64Cu-ATSM uptake.
Abstract
Carbon ion radiotherapy is an emerging cancer treatment modality that has a greater therapeutic window than conventional photon radiotherapy. To maximize the efficacy of this extremely scarce medical resource, it is important to identify predictive biomarkers of higher carbon ion relative biological effectiveness (RBE) over photons. We addressed this issue by focusing on cellular antioxidant capacity and investigated 64Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone) (64Cu-ATSM), a potential radioligand that reflects an over-reduced intracellular environment. We found that the carbon ion RBE correlated with 64Cu-ATSM uptake both in vitro and in vivo. High RBE/64Cu-ATSM …
引用总数