作者
F Reis, G Li, L Dudy, M Bauernfeind, S Glass, W Hanke, R Thomale, J Schäfer, R Claessen
发表日期
2017/7/21
期刊
Science
卷号
357
期号
6348
页码范围
287-290
出版商
American Association for the Advancement of Science
简介
Quantum spin Hall materials hold the promise of revolutionary devices with dissipationless spin currents but have required cryogenic temperatures owing to small energy gaps. Here we show theoretically that a room-temperature regime with a large energy gap may be achievable within a paradigm that exploits the atomic spin-orbit coupling. The concept is based on a substrate-supported monolayer of a high–atomic number element and is experimentally realized as a bismuth honeycomb lattice on top of the insulating silicon carbide substrate SiC(0001). Using scanning tunneling spectroscopy, we detect a gap of ~0.8 electron volt and conductive edge states consistent with theory. Our combined theoretical and experimental results demonstrate a concept for a quantum spin Hall wide-gap scenario, where the chemical potential resides in the global system gap, ensuring robust edge conductance.
引用总数
20172018201920202021202220232024118714215015515213481
学术搜索中的文章