作者
Zezhou Li, Shiteng Zhao, Robert O Ritchie, Marc A Meyers
发表日期
2019/5/1
来源
Progress in Materials Science
卷号
102
页码范围
296-345
出版商
Pergamon
简介
High-entropy alloys (HEAs), also known as multi-principal element alloys or multi-component alloys, have been the subject of numerous investigations since they were first described in 2004. The earliest HEA was the equiatomic CrMnFeCoNi “Cantor” alloy, but HEAs now encompass a broad class of metallic and ceramic systems. The concept of utilizing the high entropy of mixing to develop stable multi-element alloys may not be scientifically correct but has produced extraordinary mechanical properties in specific HEAs, mainly CrCoNi-based alloys, associated with their continuous work-hardening rate that is sustained to large plastic strains (∼0.5) and at low temperatures. This, in combination with the high frictional forces on dislocations and a propensity for twinning, leads to outstandingly high fracture toughness values (exceeding 200 MPa·m1/2) and resistance to shear-band formation under dynamic loading …
引用总数
学术搜索中的文章