作者
Zhiyuan Hu, Jianping Huang, Chun Zhao, Qinjian Jin, Yuanyuan Ma, Ben Yang
发表日期
2020/2/7
期刊
Atmospheric Chemistry and Physics
卷号
20
期号
3
页码范围
1507-1529
出版商
Copernicus GmbH
简介
Mineral dust plays an important role in the climate of the Tibetan Plateau (TP) by modifying the radiation budget, cloud macro- and microphysics, precipitation, and snow albedo. Meanwhile, the TP, with the highest topography in the world, can affect intercontinental transport of dust plumes and induce typical distribution characteristics of dust at different altitudes. In this study, we conduct a quasi-global simulation to investigate the characteristics of dust source contribution and transport over the TP at different altitudes by using a fully coupled meteorology–chemistry model, the Weather Research and Forecasting model with chemistry (WRF-Chem), with a tracer-tagging technique. Generally, the simulation reasonably captures the spatial distribution of satellite-retrieved dust aerosol optical depth (AOD) at different altitudes. Model results show that dust particles are emitted into atmosphere through updrafts over major desert regions and then transported to the TP. The East Asian dust (mainly from the Gobi and Taklamakan deserts) is transported southward and is lifted up to the TP, contributing a mass loading of 50 mg m−2 at a height of 3 km and 5 mg m−2 at a height of 12 km over the northern slope of the TP. Dust from North Africa and the Middle East are concentrated over both of the northern and southern slopes below 6 km, where mass loadings range from 10 to 100 and 1 to 10 mg m−2 below 3 km and above 9 km, respectively. As the dust is transported to the north and over the TP, mass loadings are 5–10 mg m−2 above a height of 6 km.
The dust mass flux carried from East Asia to the TP is 7.9 Tg yr−1, mostly occurring at …
引用总数
202020212022202320244816149
学术搜索中的文章