作者
KIERAN Moran, BRIAN McNAMARA, Jin Luo
发表日期
2007/3/1
期刊
Medicine and science in sports and exercise
卷号
39
期号
3
页码范围
526-533
简介
Purpose
To examine (i) the acute effect of direct vibration on neuromuscular performance with a maximal-effort dynamic resistance exercise and (ii) the acute residual effect of direct vibration training both with and without the resistance exercise.
Methods
Fourteen subjects were exposed to four training conditions in random order: exercise with vibration (E+ V); exercise with sham vibration (E+ SV); no exercise with vibration (NE+ V); and no exercise with sham vibration (NE+ SV). The exercise comprised three sets of maximal-effort bicep curls with a load of 70% 1RM. A portable vibrator was strapped onto the skin over the bicep tendon to apply vibration with an amplitude and frequency of 1.2 mm and 65 Hz. Elbow joint angle and bicep EMG were measured both during training and in pre-and posttraining tests. Angular velocity, moment, power, and bicep root mean squared value of EMG (EMG (rms)) and mean power frequency of EMG (EMG (mpf)) were determined for the concentric phase. Interday reliability ranged from 0.69 to 0.99.
Results
During training (acute effect) vibration did not enhance mean angular velocity (1.5 vs 1.5 rad. s (-1), P= 0.86), peak angular velocity (2.7 vs 2.7 rad. s (-1), P= 0.90), mean moment (27.3 vs 27.4 Nm, P= 0.83), peak moment (39.8 vs 39.4 Nm, P= 0.53), mean power (40.3 vs 41.1 W, P= 0.72), peak power (91.9 vs 90.2 W, P= 0.77), or bicep EMG (rms)(73.9 vs 71.9, P= 0.78). Similarly, after training (acute residual effect) there was no enhancement from vibration in the mechanical and EMG output when the muscle was trained or was rested (P> 0.05).
Conclusion
These findings suggest that direct vibration, with an …
引用总数
2007200820092010201120122013201420152016201720182019202020212022202320242221081987472317261
学术搜索中的文章