作者
David P Pompeani, Kendra K McLauchlan, Barrie V Chileen, Kyra D Wolf, Philip E Higuera
发表日期
2018/11/15
期刊
Biogeosciences Discussions
卷号
2018
页码范围
1-19
简介
The essential elements for the structure and function of forest ecosystems are found in relatively predictable proportions in living tissues and soils; however, both the degree of spatial variability in elemental concentrations and their relationship with wildfire history are unclear. Quantifying the association between nutrient concentrations in living plant tissue and surface soils within fire-affected forests can help determine how these elements contribute to biogeochemical resilience. Here, we present elemental concentration data (C, N, P, K, Ca, Mg, S, Fe, Mn, Zn) from 72 foliar and 44 soil samples from a network of 15 sites located in the fire-prone subalpine forests of the northern Rocky Mountains, USA Plant functional type is strongly correlated with carbon (C) and nitrogen (N) – C concentrations are highest in coniferous needles, and N concentrations are highest in broadleaved plant species. The average N / P ratio of foliage among samples is 9.8 ± 0.6 (μ ± 95 % confidence). This suggests that N is the limiting nutrient for these plants, however several factors can complicate the use of N / P ratios to evaluate nutrient status. Average C concentrations in organic soil horizons that were burned in regionally extensive fires in 1910 or 1918 CE are lower than those from sites that burned prior to 1901 CE (p < 0.05). This difference suggests that wildfires reduced the pool of soil C and that the legacy of these fires can be measured a century later. Our results help aid in modeling how changing wildfire regimes will influence biogeochemical cycling in subalpine forests.
引用总数
学术搜索中的文章