作者
Shahida Anusha Siddiqui, Andrey Vladimirovich Blinov, Alexander Vladimirovich Serov, Alexey Alekseevich Gvozdenko, Alexander Aleksandrovich Kravtsov, Andrey Ashotovich Nagdalian, Vladislav Viktorovich Raffa, David Guramievich Maglakelidze, Anastasiya Alexandrovna Blinova, Anna Vitalievna Kobina, Alexey Borisovich Golik, Salam A Ibrahim
发表日期
2021/7
期刊
Coatings
卷号
11
期号
7
页码范围
862
出版商
Multidisciplinary Digital Publishing Institute
简介
Within the framework of this study, the effect of nanoparticles of the essential trace element selenium stabilized by Polyvinylpirrolidone (PVP) C15 (8 ± 2 kDa) and ascorbic acid on the germination of barley seeds has been studied. Selenium nanoparticles stabilized by PVP C15 (8 ± 2 kDa) and ascorbic acid, characterized by a spherical shape, monodisperse size distribution, and a diameter of about 70 ± 5 nm, were obtained by the chemical reduction method. The experiment compared the effect of selenium nanoparticles and selenous acid on seed germination. The positive effect of preparation of selenium nanoparticles stabilized by PVP C15 (8 ± 2 kDa) and ascorbic acid on the length of roots and shoots, the number of roots, and the percentage of seed germination has been revealed. It was determined that the highest percentage of Hordeum vulgare L. culture seed germination was achieved using a preparation of selenium nanoparticles stabilized by PVP C15 (8 ± 2 kDa) and ascorbic acid at a concentration of of 4.65 µg/mL. Analysis of the results showed that selenium in the form of nanoparticles has an order of magnitude that is less toxic than in the form of selenous acid. The study of morphological and functional parameters during the germination of Hordeum vulgare L. seeds allowed us to conclude that selenium nanoparticles can be successfully used in agronomy and agriculture to provide plants with the essential microelement selenium, which is necessary for the normal growth and development of crops.
引用总数
学术搜索中的文章