作者
Anora K Burwell, Taili Thula-Mata, Laurie B Gower, Stefan Habeliz, Michael Kurylo, Sunita P Ho, Yung-Ching Chien, Jing Cheng, Nancy F Cheng, Stuart A Gansky, Sally J Marshall, Grayson W Marshall
发表日期
2012/6/13
期刊
PloS one
卷号
7
期号
6
页码范围
e38852
出版商
Public Library of Science
简介
It was hypothesized that applying the polymer-induced liquid-precursor (PILP) system to artificial lesions would result in time-dependent functional remineralization of carious dentin lesions that restores the mechanical properties of demineralized dentin matrix. 140 µm deep artificial caries lesions were remineralized via the PILP process for 7–28 days at 37°C to determine temporal remineralization characteristics. Poly-L-aspartic acid (27 KDa) was used as the polymeric process-directing agent and was added to the remineralization solution at a calcium-to-phosphate ratio of 2.14 (mol/mol). Nanomechanical properties of hydrated artificial lesions had a low reduced elastic modulus (ER = 0.2 GPa) region extending about 70 μm into the lesion, with a sloped region to about 140 μm where values reached normal dentin (18–20 GPa). After 7 days specimens recovered mechanical properties in the sloped region by 51% compared to the artificial lesion. Between 7–14 days, recovery of the outer portion of the lesion continued to a level of about 10 GPa with 74% improvement. 28 days of PILP mineralization resulted in 91% improvement of ER compared to the artificial lesion. These differences were statistically significant as determined from change-point diagrams. Mineral profiles determined by micro x-ray computed tomography were shallower than those determined by nanoindentation, and showed similar changes over time, but full mineral recovery occurred after 14 days in both the outer and sloped portions of the lesion. Scanning electron microscopy and energy dispersive x-ray analysis showed similar morphologies that were distinct from normal …
引用总数
201320142015201620172018201920202021202220232024471316191211191512123