作者
Martin J-D Otis, Johannes C Ayena, Louis E Tremblay, Pascal E Fortin, Bob-Antoine J Menelas
发表日期
2016/9/7
期刊
PloS one
卷号
11
期号
9
页码范围
e0162107
出版商
Public Library of Science
简介
Background
Our daily activities imply displacements on various types of soil. For persons with gait disorder or losing functional autonomy, walking on some types of soil could be challenging because of the risk of falling it represents.
Methods
In this paper, we present, in a first part, the use of an enactive shoe for an automatic differentiation of several types of soil. In a second part, using a second improved prototype (an enactive insole), twelve participants with Parkinson’s disease (PD) and nine age-matched controls have performed the Timed Up and Go (TUG) test on six types of soil with and without cueing. The frequency of the cueing was set at 10% above the cadence computed at the lower risk of falling (walking over the concrete). Depending on the cadence computed at the lower risk, the enactive insole activates a vibrotactile cueing aiming to improve gait and balance control. Finally, a risk index is computed using gait parameters in relation to given type of soil.
Results
The frequency analysis of the heel strike vibration allows the differentiation of various types of soil. The risk computed is associated to an appropriate rhythmic cueing in order to improve balance and gait impairment. The results show that a vibrotactile cueing could help to reduce the risk of falling.
Conclusions
Firstly, this paper demonstrates the feasibility of reducing the risk of falling while walking on different types of soil using vibrotactile cueing. We found a significant difference and a significant decrease in the computed risks of falling for most of types of soil especially for deformable soils which can lead to fall. Secondly, heel strike provides an approximation of the …
引用总数
2017201820192020202120222023202466122311