作者
Rebecca J McMurray, Nikolaj Gadegaard, P Monica Tsimbouri, Karl V Burgess, Laura E McNamara, Rahul Tare, Kate Murawski, Emmajayne Kingham, Richard OC Oreffo, Matthew J Dalby
发表日期
2011/8
期刊
Nature materials
卷号
10
期号
8
页码范围
637-644
出版商
Nature Publishing Group UK
简介
There is currently an unmet need for the supply of autologous, patient-specific stem cells for regenerative therapies in the clinic. Mesenchymal stem cell differentiation can be driven by the material/cell interface suggesting a unique strategy to manipulate stem cells in the absence of complex soluble chemistries or cellular reprogramming. However, so far the derivation and identification of surfaces that allow retention of multipotency of this key regenerative cell type have remained elusive. Adult stem cells spontaneously differentiate in culture, resulting in a rapid diminution of the multipotent cell population and their regenerative capacity. Here we identify a nanostructured surface that retains stem-cell phenotype and maintains stem-cell growth over eight weeks. Furthermore, the study implicates a role for small RNAs in repressing key cell signalling and metabolomic pathways, demonstrating the potential of surfaces …
引用总数
2011201220132014201520162017201820192020202120222023202444787100881147773565657423014