作者
Loren M Lasko, Clarissa G Jakob, Rohinton P Edalji, Wei Qiu, Debra Montgomery, Enrico L Digiammarino, T Matt Hansen, Roberto M Risi, Robin Frey, Vlasios Manaves, Bailin Shaw, Mikkel Algire, Paul Hessler, Lloyd T Lam, Tamar Uziel, Emily Faivre, Debra Ferguson, Fritz G Buchanan, Ruth L Martin, Maricel Torrent, Gary G Chiang, Kannan Karukurichi, J William Langston, Brian T Weinert, Chunaram Choudhary, Peter de Vries, Arthur F Kluge, Michael A Patane, John H Van Drie, Ce Wang, David McElligott, Ed Kesicki, Ronen Marmorstein, Chaohong Sun, Philip A Cole, Saul H Rosenberg, Michael R Michaelides, Albert Lai, Kenneth D Bromberg
发表日期
2017/10/5
期刊
Nature
卷号
550
期号
7674
页码范围
128-132
出版商
Nature Publishing Group UK
简介
The dynamic and reversible acetylation of proteins, catalysed by histone acetyltransferases (HATs) and histone deacetylases (HDACs), is a major epigenetic regulatory mechanism of gene transcription and is associated with multiple diseases. Histone deacetylase inhibitors are currently approved to treat certain cancers, but progress on the development of drug-like histone actyltransferase inhibitors has lagged behind. The histone acetyltransferase paralogues p300 and CREB-binding protein (CBP) are key transcriptional co-activators that are essential for a multitude of cellular processes, and have also been implicated in human pathological conditions (including cancer). Current inhibitors of the p300 and CBP histone acetyltransferase domains, including natural products, bi-substrate analogues and the widely used small molecule C646,, lack potency or selectivity. Here, we describe A-485, a potent, selective and …
引用总数
20172018201920202021202220232024247691001181058476
学术搜索中的文章