作者
Maria Doroteia Campos, Maria do Rosario Felix, Mariana Patanita, Patrick Materatski, André Albuquerque, Joana A Ribeiro, Carla Varanda
发表日期
2022/2/1
来源
Biology
卷号
11
期号
2
页码范围
235
出版商
MDPI
简介
Simple Summary
Tomato is one of the most cultivated and economically important vegetable crops throughout the world. It is affected by a panoply of different pathogens that cause infectious diseases that reduce tomato yield and affect product quality, with the most common symptoms being wilts, leaf spots/blights, fruit spots, and rots. To survive, tomato, as other plants, have developed elaborate defense mechanisms against plant pathogens. Among several genes already identified in tomato response to pathogens, we highlight those encoding the transcription factors (TFs). TFs are regulators of gene expression and are involved in large-scale biological phenomena. Here, we present an overview of recent studies of tomato TFs regarding defense responses to pathogen attack, selected for their abundance, importance, and availability of functionally well-characterized members. Tomato TFs’ roles and the possibilities related to their use for genetic engineering in view of crop breeding are presented.
Abstract
Tomato, one of the most cultivated and economically important vegetable crops throughout the world, is affected by a panoply of different pathogens that reduce yield and affect product quality. The study of tomato–pathogen system arises as an ideal system for better understanding the molecular mechanisms underlying disease resistance, offering an opportunity of improving yield and quality of the products. Among several genes already identified in tomato response to pathogens, we highlight those encoding the transcription factors (TFs). TFs act as transcriptional activators or repressors of gene expression …
引用总数
学术搜索中的文章