作者
Bernadeta Dadonaite, Jack Brown, Teagan E McMahon, Ariana G Farrell, Daniel Asarnow, Cameron Stewart, Jenni Logue, Ben Murrell, Helen Y Chu, David Veesler, Jesse D Bloom
发表日期
2023/11/14
期刊
biorxiv
出版商
Cold Spring Harbor Laboratory Preprints
简介
SARS-CoV-2 variants acquire mutations in spike that promote immune evasion and impact other properties that contribute to viral fitness such as ACE2 receptor binding and cell entry. Knowledge of how mutations affect these spike phenotypes can provide insight into the current and potential future evolution of the virus. Here we use pseudovirus deep mutational scanning to measure how> 9,000 mutations across the full XBB. 1.5 and BA. 2 spikes affect ACE2 binding, cell entry, or escape from human sera. We find that mutations outside the receptor-binding domain (RBD) have meaningfully impacted ACE2 binding during SARS-CoV-2 evolution. We also measure how mutations to the XBB. 1.5 spike affect neutralization by serum from individuals who recently had SARS-CoV-2 infections. The strongest serum escape mutations are in the RBD at sites 357, 420, 440, 456, and 473—however, the antigenic impacts of …
引用总数