作者
Wentao Lin, Nicholas J Saner, Xiquan Weng, Nikeisha J Caruana, Javier Botella, Jujiao Kuang, Matthew JC Lee, Nicholas A Jamnick, Nathan W Pitchford, Andrew Garnham, Jonathan D Bartlett, Hao Chen, David J Bishop
发表日期
2022/7/22
期刊
Frontiers in Endocrinology
卷号
13
页码范围
863224
出版商
Frontiers Media SA
简介
Background
Inadequate sleep is associated with many detrimental health effects, including increased risk of developing insulin resistance and type 2 diabetes. These effects have been associated with changes to the skeletal muscle transcriptome, although this has not been characterised in response to a period of sleep restriction. Exercise induces a beneficial transcriptional response within skeletal muscle that may counteract some of the negative effects associated with sleep restriction. We hypothesised that sleep restriction would down-regulate transcriptional pathways associated with glucose metabolism, but that performing exercise would mitigate these effects.
Methods
20 healthy young males were allocated to one of three experimental groups: a Normal Sleep (NS) group (8 h time in bed per night (TIB), for five nights (11 pm – 7 am)), a Sleep Restriction (SR) group (4 h TIB, for five nights (3 am – 7 am)), and a Sleep Restriction and Exercise group (SR+EX) (4 h TIB, for five nights (3 am – 7 am) and three high-intensity interval exercise (HIIE) sessions (performed at 10 am)). RNA sequencing was performed on muscle samples collected pre- and post-intervention. Our data was then compared to skeletal muscle transcriptomic data previously reported following sleep deprivation (24 h without sleep).
Results
Gene set enrichment analysis (GSEA) indicated there was an increased enrichment of inflammatory and immune response related pathways in the SR group post-intervention. However, in the SR+EX group the direction of enrichment in these same pathways occurred in the opposite directions. Despite this, there were no significant …
引用总数