作者
Aaron A Naidoo-Bagwell, Fanny M Monteiro, Katharine R Hendry, Scott Burgan, Jamie D Wilson, Ben A Ward, Andy Ridgwell, Daniel J Conley
发表日期
2023/2/22
期刊
EGUsphere
卷号
2023
页码范围
1-29
出版商
Copernicus Publications
简介
We extend the ecological component (‘ECOGEM’) of the carbon-centric Grid Enabled Integrated Earth system model (‘cGEnIE’) to include a diatom functional group. ECOGEM represents plankton community dynamics via a spectrum of ecophysiological traits originally based on size and plankton food web (phyto- and zooplankton; EcoGEnIE 1.0), which we developed here to account for a diatom functional group (EcoGEnIE 1.1). We tuned EcoGEnIE 1.1, exploring a range of ecophysiological parameter values specific to phytoplankton, including diatom growth and survival (18 parameters over 250 runs) to fit best the model behaviour akin to observations of diatom biogeography, size class distribution, and global ocean biogeochemistry. This, in conjunction with a previously developed representation in the water column of opal dissolution and an updated iron cycle, produced an improved distribution of dissolved oxygen in the water column relative to the previous EcoGEnIE 1.0 as well as a value for global export production (7.5 Pg C yr−1) closer to previous estimates. Simulated diatom biogeography is characterised by larger size classes dominating at high latitudes, notably in the Southern Ocean, and smaller size classes dominating at lower latitudes. Overall, diatom biological productivity accounts for ~ 20 % of global carbon biomass in the model, with diatoms out-competing other phytoplankton functional groups when dissolved silica is available due to their faster maximum photosynthetic rates and reduced palatability to grazers. Adding a diatom functional group provides the cGEnIE Earth system model with an extended capability to explore …
学术搜索中的文章
AA Naidoo-Bagwell, FM Monteiro, KR Hendry… - EGUsphere, 2023