作者
Xudong Wu, Marc Siggel, Sergey Ovchinnikov, Wei Mi, Vladimir Svetlov, Evgeny Nudler, Maofu Liao, Gerhard Hummer, Tom A Rapoport
发表日期
2020/4/24
期刊
Science
卷号
368
期号
6489
页码范围
eaaz2449
出版商
American Association for the Advancement of Science
简介
INTRODUCTION
Protein homeostasis in the endoplasmic reticulum (ER) is maintained by a quality control system. When a newly synthesized ER protein misfolds, it is ultimately retrotranslocated into the cytosol, polyubiquitinated, and degraded by the proteasome, a pathway referred to as ER-associated protein degradation (ERAD). ERAD alleviates cytotoxic stress imposed by protein misfolding and is implicated in numerous diseases. ERAD is found in all eukaryotic cells but is best studied for the ERAD-L pathway in Saccharomyces cerevisiae, which disposes of misfolded glycoproteins in the ER lumen. The glycan attached to these proteins is first trimmed by glycosidases to generate a terminal α1,6-mannose residue. This residue, together with an unfolded polypeptide segment, targets the substrate to the Hrd1 complex, which is composed of the multispanning ubiquitin ligase Hrd1 and four additional proteins …
引用总数
20192020202120222023202411647415033