作者
Philipp Hans Günter Boeven
发表日期
2019/10/8
简介
Wheat is one of the top three global staple crops, possesses the largest global cultivation area, and plays a key role for the world’s future food security. However, its projected yield increase is insufficient to meet the future food and feed demand of an ever-growing world population. Consequently, the rate of breeding progress and productivity of wheat must be increased. Unfortunately, current wheat line breeding has a low return on investment mainly due to high levels of farm saved seeds, which makes wheat less attractive for the plant breeding industry and leads to lower investments and progress compared to other crops where the hybrid technology is established. Hybrid breeding is a worldwide success story in many crops but is not yet established in wheat. Hybrid wheat promises increased yield gain due to the exploitation of heterosis, higher yield stability and stabilized return on investments for breeding companies which warrants further investment and breeding progress in this important stable crop.
The self-pollinating nature of wheat is a major bottleneck for hybrid seed production and efficient hybrid wheat breeding requires the redesign of the wheat floral architecture to enhance cross-pollination. Furthermore, the longterm success of hybrid wheat is crucially dependent on the establishment of heterotic groups, on the identification of a high yielding heterotic pattern, and finally, on the realized amount of heterosis and hybrid performance. Therefore, the main objectives of my thesis research were to:(i) analyze the genetic diversity and adaptation in a global winter wheat collection and evaluate how diversity trends could be used to support …