作者
S Wachtel-Galor, IFF Benzie
发表日期
2011
出版商
CRC Press, Boca Raton (FL)
简介
Plants are rich in a variety of compounds. Many are secondary metabolites and include aromatic substances, most of which are phenols or their oxygen-substituted derivatives such as tannins (Hartmann 2007; Jenke-Kodama, Müller, and Dittmann 2008). Many of these compounds have antioxidant properties (see Chapter 2 on antioxidants in herbs and spices). Ethnobotanicals are important for pharmacological research and drug development, not only when plant constituents are used directly as therapeutic agents, but also as starting materials for the synthesis of drugs or as models for pharmacologically active compounds (Li and Vederas 2009). About 200 years ago, the first pharmacologically active pure compound, morphine, was produced from opium extracted from seeds pods of the poppy Papaver somniferum. This discovery showed that drugs from plants can be purified and administered in precise dosages regardless of the source or age of the material (Rousseaux and Schachter 2003; Hartmann 2007). This approach was enhanced by the discovery of penicillin (Li and Vederas 2009). With this continued trend, products from plants and natural sources (such as fungi and marine microorganisms) or analogs inspired by them have contributed greatly to the commercial drug preparations today. Examples include antibiotics (eg, penicillin, erythromycin); the cardiac stimulant digoxin from foxglove (Digitalis purpurea); salicylic acid, a precursor of aspirin, derived from willow bark (Salix spp.); reserpine, an antipsychotic and antihypertensive drug from Rauwolfia spp.; and antimalarials such as quinine from Cinchona bark and lipid-lowering …
引用总数
20122013201420152016201720182019202020212022202320248284164658710811413113215915756