作者
Maria Julia Neves Martins, Marcio Augusto Ribeiro Sanches, Tiago Carregari Polachini, Eduardo Basílio de Oliveira, Jane Selia dos Reis Coimbra, Javier Telis-Romero
发表日期
2023/7/10
期刊
Ciência e Agrotecnologia
卷号
47
页码范围
e018722
出版商
Editora da Universidade Federal de Lavras
简介
Saturated salt solutions produce environments with specific relative humidities used in several applications, such as determining water sorption isotherms of foods. However, the preparation of saturated solutions requires knowledge of solubility data. Thus, the objective of this work was to determine the solubility of 14 salts: lithium bromide (LiBr), lithium chloride (LiCl), lithium iodide (LiI), magnesium chloride (MgCl2), sodium iodide (NaI), potassium carbonate (K2CO3), magnesium nitrate (Mg(NO3)2), sodium bromide (NaBr), potassium iodide (KI), sodium chloride (NaCl), ammonium sulfate ((NH4)2SO4), potassium chloride (KCl), potassium nitrate (KNO3), and potassium sulfate (K2SO4) in the temperature range of 275.15 to 363.15 K at 101.3 kPa. The apparatus for the solubility determination consists of a jacketed glass cell and a magnetic stirrer. Furthermore, polynomial and exponential empirical models were fitted to the observed data to determine salt solubilities. Salt solubilities ranged from 7.39 to 80.41 g of salt·(100 g of solution)-1. Sodium iodide (NaI) presented the highest (p<0.05) solubility, up to 343.15 K, and lithium iodide (LiI) up to 363.15 K. The specific equilibrium moistures afforded by saturated saline solutions were associated with water activity data. A general mathematical model to determine the solubility of different salts was not obtained because the dissolution behaviors of each salt are distinct. However, the availability of solubility data of saline solutions covering a wide range of temperatures is helpful since the salts have different behavior.
学术搜索中的文章
MJN Martins, MAR Sanches, TC Polachini, EB Oliveira… - Ciência e Agrotecnologia, 2023