作者
Lamiaa M Mahmoud, Patrick J Huyck, Christopher I Vincent, Frederick G Gmitter Jr, Jude W Grosser, Manjul Dutt
发表日期
2021/7/14
期刊
Plants
卷号
10
期号
7
页码范围
1439
出版商
MDPI
简介
Huanglongbing (HLB), caused by the phloem-limited bacterium Candidatus Liberibacter asiaticus (CaLas), is the primary biotic stress causing significant economic damage to the global citrus industry. Among the abiotic stresses, salinity affects citrus production worldwide, especially in arid and coastal regions. In this study, we evaluated open-pollinated seedlings of the S10 (a diploid rootstock produced from a cross between two siblings of the Hirado Buntan Pink pummelo (Citrus maxima (Burm.) Merr.) with the Shekwasha mandarin (Citrus reticulata Blanco)) for their ability to tolerate HLB and salinity stresses. In a greenhouse study, ‘Valencia’ sweet orange (either HLB-positive or negative) was grafted onto six clonally propagated lines generated from the screened seedlings in the greenhouse and the trees were irrigated with 150 mM NaCl after eight months of successful grafting and detection of CaLas in the leaf petioles. Cleopatra mandarin was used as a salt-tolerant and HLB-sensitive rootstock control. CaLas infection was monitored using a quantitative polymerase chain reaction before and after NaCl treatments. Following three months of NaCl treatment, ‘Valencia’ leaves on the S10 rootstock seedlings recorded lower levels of chlorophyll content compared to Cleopatra under similar conditions. Malondialdehyde content was higher in HLB-infected ‘Valencia’ grafted onto Cleopatra than in the S10 lines. Several plant defense-related genes were significantly upregulated in the S10 lines. Antioxidant and Na+ co-transporter genes were differentially regulated in these lines. Based on our results, selected S10 lines have potential as salt …
引用总数