作者
Ana Caulino-Rocha, Nádia Carolina Rodrigues, Joaquim Alexandre Ribeiro, Diana Cunha-Reis
发表日期
2022/4/20
期刊
Biology
卷号
11
期号
5
页码范围
627
出版商
MDPI
简介
Simple Summary
Regulation of synaptic plasticity through control of disinhibition is an important process in the prevention of excessive plasticity in both physiological and pathological conditions. Interneuron-selective interneurons, such as the ones expressing VIP in the hippocampus, may play a crucial role in this process. In this paper we showed that endogenous activation of VPAC1—not VPAC2 receptors—exerts an inhibitory control of long-term potentiation (LTP) induced by theta-burst stimulation (TBS) in the hippocampus, through a mechanism dependent on GABAergic transmission. This suggests that VPAC1-mediated modulation of synaptic transmission at GABAergic synapses to interneurons will ultimately influence NMDA-dependent LTP expression by modulating inhibitory control of pyramidal cell dendrites and postsynaptic depolarization during LTP induction. Accordingly, the transduction pathways mostly involved in this effect were the ones involved in TBS-induced LTP expression like NMDA receptor activation and CaMKII activity. In addition, the actions of endogenous VIP through VPAC1 receptors may indirectly influence the control of dendritic excitability by Kv4.2 channels.
Abstract
Vasoactive intestinal peptide (VIP), acting on both VPAC1 and VPAC2 receptors, is a key modulator of hippocampal synaptic transmission, pyramidal cell excitability and long-term depression (LTD), exerting its effects partly through modulation GABAergic disinhibitory circuits. Yet, the role of endogenous VIP and its receptors in modulation of hippocampal LTP and the involvement of disinhibition in this modulation have …
引用总数