作者
Andréa G Grottoli, Paula Dalcin Martins, Michael J Wilkins, Michael D Johnston, Mark E Warner, Wei-Jun Cai, Todd F Melman, Kenneth D Hoadley, D Tye Pettay, Stephen Levas, Verena Schoepf
发表日期
2018/1/16
期刊
PloS one
卷号
13
期号
1
页码范围
e0191156
出版商
Public Library of Science
简介
Rising seawater temperature and ocean acidification threaten the survival of coral reefs. The relationship between coral physiology and its microbiome may reveal why some corals are more resilient to these global change conditions. Here, we conducted the first experiment to simultaneously investigate changes in the coral microbiome and coral physiology in response to the dual stress of elevated seawater temperature and ocean acidification expected by the end of this century. Two species of corals, Acropora millepora containing the thermally sensitive endosymbiont C21a and Turbinaria reniformis containing the thermally tolerant endosymbiont Symbiodinium trenchi, were exposed to control (26.5°C and pCO2 of 364 μatm) and treatment (29.0°C and pCO2 of 750 μatm) conditions for 24 days, after which we measured the microbial community composition. These microbial findings were interpreted within the context of previously published physiological measurements from the exact same corals in this study (calcification, organic carbon flux, ratio of photosynthesis to respiration, photosystem II maximal efficiency, total lipids, soluble animal protein, soluble animal carbohydrates, soluble algal protein, soluble algal carbohydrate, biomass, endosymbiotic algal density, and chlorophyll a). Overall, dually stressed A. millepora had reduced microbial diversity, experienced large changes in microbial community composition, and experienced dramatic physiological declines in calcification, photosystem II maximal efficiency, and algal carbohydrates. In contrast, the dually stressed coral T. reniformis experienced a stable and more diverse microbiome …
引用总数
20182019202020212022202320249263031232513
学术搜索中的文章