作者
CJ Hennigan, MA Miracolo, GJ Engelhart, AA May, AA Presto, T Lee, AP Sullivan, GR McMeeking, H Coe, CE Wold, W-M Hao, JB Gilman, WC Kuster, J De Gouw, BA Schichtel, JL Collett Jr, SM Kreidenweis, AL Robinson
发表日期
2011/8/1
期刊
Atmospheric Chemistry and Physics
卷号
11
期号
15
页码范围
7669-7686
出版商
Copernicus Publications
简介
Smog chamber experiments were conducted to investigate the chemical and physical transformations of organic aerosol (OA) during photo-oxidation of open biomass burning emissions. The experiments were carried out at the US Forest Service Fire Science Laboratory as part of the third Fire Lab at Missoula Experiment (FLAME III). We investigated emissions from 12 different fuels commonly burned in North American wildfires. The experiments feature atmospheric and plume aerosol and oxidant concentrations; aging times ranged from 3 to 4.5 h. OA production, expressed as a mass enhancement ratio (ratio of OA to primary OA (POA) mass), was highly variable. OA mass enhancement ratios ranged from 2.9 in experiments where secondary OA (SOA) production nearly tripled the POA concentration to 0.7 in experiments where photo-oxidation resulted in a 30 % loss of the OA mass. The campaign-average OA mass enhancement ratio was 1.7 ± 0.7 (mean ± 1σ); therefore, on average, there was substantial SOA production. In every experiment, the OA was chemically transformed. Even in experiments with net loss of OA mass, the OA became increasingly oxygenated and less volatile with aging, indicating that photo-oxidation transformed the POA emissions. Levoglucosan concentrations were also substantially reduced with photo-oxidation. The transformations of POA were extensive; using levoglucosan as a tracer for POA, unreacted POA only contributed 17 % of the campaign-average OA mass after 3.5 h of exposure to typical atmospheric hydroxyl radical (OH) levels. Heterogeneous reactions with OH could account for less than half of this …
引用总数
201020112012201320142015201620172018201920202021202220232024141623243131361932272422198