作者
Frederic Vigant, Jihye Lee, Axel Hollmann, Lukas B Tanner, Zeynep Akyol Ataman, Tatyana Yun, Guanghou Shui, Hector C Aguilar, Dong Zhang, David Meriwether, Gleyder Roman-Sosa, Lindsey R Robinson, Terry L Juelich, Hubert Buczkowski, Sunwen Chou, Miguel ARB Castanho, Mike C Wolf, Jennifer K Smith, Ashley Banyard, Margaret Kielian, Srinivasa Reddy, Markus R Wenk, Matthias Selke, Nuno C Santos, Alexander N Freiberg, Michael E Jung, Benhur Lee
发表日期
2013/4/18
期刊
PLoS pathogens
卷号
9
期号
4
页码范围
e1003297
出版商
Public Library of Science
简介
LJ001 is a lipophilic thiazolidine derivative that inhibits the entry of numerous enveloped viruses at non-cytotoxic concentrations (IC50≤0.5 µM), and was posited to exploit the physiological difference between static viral membranes and biogenic cellular membranes. We now report on the molecular mechanism that results in LJ001's specific inhibition of virus-cell fusion.
The antiviral activity of LJ001 was light-dependent, required the presence of molecular oxygen, and was reversed by singlet oxygen (1O2) quenchers, qualifying LJ001 as a type II photosensitizer. Unsaturated phospholipids were the main target modified by LJ001-generated 1O2. Hydroxylated fatty acid species were detected in model and viral membranes treated with LJ001, but not its inactive molecular analog, LJ025. 1O2-mediated allylic hydroxylation of unsaturated phospholipids leads to a trans-isomerization of the double bond and concurrent formation of a hydroxyl group in the middle of the hydrophobic lipid bilayer. LJ001-induced 1O2-mediated lipid oxidation negatively impacts on the biophysical properties of viral membranes (membrane curvature and fluidity) critical for productive virus-cell membrane fusion. LJ001 did not mediate any apparent damage on biogenic cellular membranes, likely due to multiple endogenous cytoprotection mechanisms against phospholipid hydroperoxides.
Based on our understanding of LJ001's mechanism of action, we designed a new class of membrane-intercalating photosensitizers to overcome LJ001's limitations for use as an in vivo antiviral agent. Structure activity relationship (SAR) studies led to a novel class of compounds …
引用总数
201320142015201620172018201920202021202220232024411121389415111795
学术搜索中的文章