作者
Yoshiki Kobayashi, Nicolas Mercado, Peter J Barnes, Kazuhiro Ito
发表日期
2011/12/19
期刊
PloS one
卷号
6
期号
12
页码范围
e27627
出版商
Public Library of Science
简介
Background
Corticosteroid insensitivity is a major barrier of treatment for some chronic inflammatory diseases, such as severe asthma, but the molecular mechanism of the insensitivity has not been fully elucidated. The object of this study is to investigate the role of protein phosphate 2A (PP2A), a serine/threonine phosphatase, on corticosteroid sensitivity in severe asthma.
Methodology/Principal Findings
Corticosteroid sensitivity was determined by the dexamethasone ability to inhibit TNFα-induced IL-8 or LPS-induced TNFα production. PP2A expression, glucocorticoid receptor (GR) nuclear translocation defined as the nuclear/cytoplasmic GR ratio and phosphorylation of GR-Ser226, c-Jun N-terminal kinase 1 (JNK1) and PP2A were analysed by Western-blotting. Phosphatase activity was measured by fluorescence-based assay. Okadaic acid (OA), a PP2A inhibitor, reduced corticosteroid sensitivity with reduced GR nuclear translocation and increased GR phosphorylation in U937 monocytic cells. PP2A knockdown by RNA interference showed similar effects. IL-2/IL-4 treatment to U937 reduced corticosteroid sensitivity, and PP2A expression/activity. In peripheral blood mononuclear cells (PBMCs) from severe asthma, the PP2A expression and activity were significantly reduced with concomitant enhancement of PP2AC-Tyr307 phosphorylation compared with those in healthy volunteers. As the results, GR-Ser226 and JNK1 phosphorylation were increased. The expression and activity of PP2A were negatively correlated with phosphorylation levels of GR-Ser226. Furthermore, co-immunoprecipitation assay in …
引用总数
20122013201420152016201720182019202020212022202320245141210161296742123