作者
Jiyung Shin, Fuguo Jiang, Jun-Jie Liu, Nicolas L Bray, Benjamin J Rauch, Seung Hyun Baik, Eva Nogales, Joseph Bondy-Denomy, Jacob E Corn, Jennifer A Doudna
发表日期
2017/7/12
期刊
Science advances
卷号
3
期号
7
页码范围
e1701620
出版商
American Association for the Advancement of Science
简介
CRISPR (clustered regularly interspaced short palindromic repeats)–Cas9 gene editing technology is derived from a microbial adaptive immune system, where bacteriophages are often the intended target. Natural inhibitors of CRISPR-Cas9 enable phages to evade immunity and show promise in controlling Cas9-mediated gene editing in human cells. However, the mechanism of CRISPR-Cas9 inhibition is not known, and the potential applications for Cas9 inhibitor proteins in mammalian cells have not been fully established. We show that the anti-CRISPR protein AcrIIA4 binds only to assembled Cas9–single-guide RNA (sgRNA) complexes and not to Cas9 protein alone. A 3.9 Å resolution cryo–electron microscopy structure of the Cas9-sgRNA-AcrIIA4 complex revealed that the surface of AcrIIA4 is highly acidic and binds with a 1:1 stoichiometry to a region of Cas9 that normally engages the DNA protospacer …
引用总数
201720182019202020212022202320241258645453534220
学术搜索中的文章
J Shin, F Jiang, JJ Liu, NL Bray, BJ Rauch, SH Baik… - Science advances, 2017