作者
Seung Yup Lee, Julia M Pakela, Kyounghwan Na, Jiaqi Shi, Barbara J McKenna, Diane M Simeone, Euisik Yoon, James M Scheiman, Mary-Ann Mycek
发表日期
2020/11/20
期刊
Science Advances
卷号
6
期号
47
页码范围
eabc1746
简介
Pancreatic cancer is one of the deadliest cancers, with a 5-year survival rate of <10%. The current approach to confirming a tissue diagnosis, endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA), requires a time-consuming, qualitative cytology analysis and may be limited because of sampling error. We designed and engineered a miniaturized optoelectronic sensor to assist in situ, real-time, and objective evaluation of human pancreatic tissues during EUS-FNA. A proof-of-concept prototype sensor, compatible with a 19-gauge hollow-needle commercially available for EUS-FNA, was constructed using microsized optoelectronic chips and microfabrication techniques to perform multisite tissue optical sensing. In our bench-top verification and pilot validation during surgery on freshly excised human pancreatic tissues (four patients), the fabricated sensors showed a comparable performance to our previous …
引用总数
学术搜索中的文章