作者
Ceyhan Ceran
发表日期
2012/10
出版商
Mühendislik ve Fen Bilimleri Enstitüsü
简介
ERBB2 is a tyrosine kinase receptor which can act as homodimers or heterodimers with other members of the ERBB family. Nearly 30% of breast cancers overexpress ERBB2, which can be effectively targeted by anti-ERBB2 monoclonal antibodies. Trastuzumab directed against an epitope on subdomain IV of the extracellular domain (ECD) of ERBB2 is a clinically used therapeutics but the response rate is poor and acquired resistance is frequent. Pertuzumab that binds to subdomain II and inhibits receptor dimerization is another promising therapeutics under clinical trials. Anti-ERBB2 antibodies directed to novel epitopes are potentially useful tools for replacement and combinatorial therapies. We produced five new anti-ERBB2 antibodies, all directed against epitope(s) present only on the native ECD. They performed selective growth inhibitory effects depending on the level of ERBB2 expression and cellular background. When used alone, novel anti-ERBB2 antibodies displayed modest but significant growth inhibition on SK-BR-3, BT-474 and MDA-MB-361 cells with ERBB2 overexpression; while no detectable inhibition was observed on MCF-7 and T47D cells lacking ERBB2 amplification. When the antibodies were tested in combination with TNF-?, they acted synergistically on SK-BR-3 cells, producing upto 80% growth inhibition; but performed antagonistically on BT-474 cells. Detailed investigation of a representative antibody indicated G1-arrest as the main mechanism of the anti-proliferative effects exerted on SK-BR-3 cells. Antibody treatment induced permanent inhibition of DNA synthesis, leading to accumulation of cells at G1-phase; an …