作者
Claudia Calabrese, Natalie R Davidson, Nuno A Fonseca, Yao He, André Kahles, K Lehmann, Fenglin Liu, Yuichi Shiraishi, Cameron M Soulette, Lara Urban, Deniz Demircioğlu, Liliana Greger, Siliang Li, Dongbing Liu, Marc D Perry, Linda Xiang, Fan Zhang, Junjun Zhang, Peter Bailey, Serap Erkek, Katherine A Hoadley, Yong Hou, Helena Kilpinen, Jan O Korbel, Maximillian G Marin, Julia Markowski, Tannistha Nandi, Qiang Pan-Hammarström, Chandra Sekhar Pedamallu, Reiner Siebert, Stefan G Stark, Hong Su, Patrick Tan, Sebastian M Waszak, Christina Yung, Shida Zhu, Philip Awadalla, Chad J Creighton, Matthew Meyerson, BF Ouellette, Kui Wu, Huangming Yang, Alvis Brazma, Angela N Brooks, Jonathan Göke, Gunnar Rätsch, Roland F Schwarz, Oliver Stegle, Zemin Zhang
发表日期
2017/9/3
简介
We present the most comprehensive catalogue of cancer-associated gene alterations through characterization of tumor transcriptomes from 1,188 donors of the Pan-Cancer Analysis of Whole Genomes project. Using matched whole-genome sequencing data, we attributed RNA alterations to germline and somatic DNA alterations, revealing likely genetic mechanisms. We identified 444 associations of gene expression with somatic non-coding single-nucleotide variants. We found 1,872 splicing alterations associated with somatic mutation in intronic regions, including novel exonization events associated with Alu elements. Somatic copy number alterations were the major driver of total gene and allele-specific expression (ASE) variation. Additionally, 82% of gene fusions had structural variant support, including 75 of a novel class called “bridged” fusions, in which a third genomic location bridged two different genes. Globally, we observe transcriptomic alteration signatures that differ between cancer types and have associations with DNA mutational signatures. Given this unique dataset of RNA alterations, we also identified 1,012 genes significantly altered through both DNA and RNA mechanisms. Our study represents an extensive catalog of RNA alterations and reveals new insights into the heterogeneous molecular mechanisms of cancer gene alterations.
引用总数
2017201820192020202172853
学术搜索中的文章