作者
Morteza Hasani Shoreh
发表日期
2018/11/9
机构
Ecole Polytechnique Fédérale de Lausanne
简介
Optical tomography has been widely investigated for biomedical imaging applications. In recent years, it has been combined with digital holography and has been employed to produce high quality images of phase objects such as cells. In this Thesis, we look into some of the newest optical Diffraction Tomography (DT) based techniques to solve Three-Dimensional (3D) reconstruction problems and discuss and compare some of the leading ideas and papers. Then we propose a neural-network-based algorithm to solve this problem and apply it on both synthetic and biological samples. Conventional phase tomography with coherent light and off axis recording is performed. The Beam Propagation Method (BPM) is used to model scattering and each xy plane is modeled by a layer of neurons in the BPM. The network’s output (simulated data) is compared to the experimental measurements and the error is used for correcting the weights of the neurons (the refractive indices of the nodes) using standard error back-propagation techniques. The proposed algorithm is detailed and investigated. Then, we look into resolution-conserving regularization and discuss a method for selecting regularizing parameters. In addition, the local minima and phase unwrapping problems are discussed and ways of avoiding them are investigated. It is shown that the proposed learning tomography (LT) achieves better performance than other techniques such as, DT especially when insufficient number or incomplete set of measurements is available. We also explore the role of regularization in obtaining higher fidelity images without losing resolution. It is experimentally …