作者
Manuel Anguita-Maeso, Carmen Haro, Miguel Montes-Borrego, Leonardo De La Fuente, Juan A Navas-Cortés, Blanca B Landa
发表日期
2021/6/10
期刊
Agronomy
卷号
11
期号
6
页码范围
1179
出版商
MDPI
简介
Vascular pathogens are the causal agents of main diseases threatening the health and growth of olive crops worldwide. The use of endophytic microorganisms represents a challenging and promising strategy for management of vascular diseases in olive. Although current research has been focused on analyzing the structure and diversity of the endophytic microbial communities inhabiting the olive xylem, the characterization of this ecological niche has been overlooked and to date remain unexplored, despite that the characterization of the xylem sap composition is essential to unravel the nutritional requirements of xylem-limited microorganisms. In this study, branches from plantlets and adult olive trees of cultivars Picual and Arbequina were selected to characterize the chemical and microbial composition of olive xylem sap extracted using a Scholander pressure chamber. Metabolome and ionome analyses of xylem sap were performed by proton nuclear magnetic resonance (NMR) spectroscopy-based and by inductively coupled plasma with optical emission spectroscopy (ICP-OES), respectively. Olive xylem sap metabolites included a higher relative percentage of sugars (54.35%), followed by alcohols (28.85%), amino acids (8.01%), organic acids (7.68%), and osmolytes (1.12%). Within each of these groups, the main metabolites in the olive xylem sap were mannitol, ethanol, glutamine, acetic acid, and trigonelline, whereas K and Cl were the main element and inorganic anion, respectively. Metabolomic profile varied when comparing olive plant age and genotype. The levels of glucose, fructose, sucrose and mannitol, choline, B and PO43 …
引用总数