作者
Jaecheol Lee, Ning-Yi Shao, David T Paik, Haodi Wu, Hongchao Guo, Vittavat Termglinchan, Jared M Churko, Youngkyun Kim, Tomoya Kitani, Ming-Tao Zhao, Yue Zhang, Kitchener D Wilson, Ioannis Karakikes, Michael P Snyder, Joseph C Wu
发表日期
2018/3/1
期刊
Cell Stem Cell
卷号
22
期号
3
页码范围
428-444. e5
出版商
Elsevier
简介
Cardiac development requires coordinated and large-scale rearrangements of the epigenome. The roles and precise mechanisms through which specific epigenetic modifying enzymes control cardiac lineage specification, however, remain unclear. Here we show that the H3K4 methyltransferase SETD7 controls cardiac differentiation by reading H3K36 marks independently of its enzymatic activity. Through chromatin immunoprecipitation sequencing (ChIP-seq), we found that SETD7 targets distinct sets of genes to drive their stage-specific expression during cardiomyocyte differentiation. SETD7 associates with different co-factors at these stages, including SWI/SNF chromatin-remodeling factors during mesodermal formation and the transcription factor NKX2.5 in cardiac progenitors to drive their differentiation. Further analyses revealed that SETD7 binds methylated H3K36 in the bodies of its target genes to facilitate …
引用总数
20182019202020212022202320241124109114