作者
Fatima Shahid, Muhammad Shehroz, Tahreem Zaheer, Amjad Ali
发表日期
2020/10/5
期刊
Front. Anti-Infect. Drug Discov
卷号
8
页码范围
144-158
简介
Pathogenic bacteria are evolving at a much faster rate and have the ability to acquire new antibacterial resistance patterns. The most common pathogenic bacteria are now becoming increasingly resistant to available antibiotics. The CDC has suggested to find alternative therapeutics to combat the growing antimicrobial resistance. Thanks to technological development in sequencing platforms and sophisticated bioinformatics pipelines, it now easier to analyze large-scale genomic data and propose alternative and novel treatment options. Subtractive genomics is one such approach that mines whole genomic DNA for identification of potential drug target (s). This strategy employs various computational filters using databases and online servers to screen and prioritize certain candidate proteins. Each filter analyzes the whole proteome of bacteria under study in a step-wise manner. Initially, strainspecific paralogous and host-specific homologous sequences are subtracted from the bacterial proteome to remove duplicates and prevent cytotoxicity and autoimmunity related challenges. The sorted proteome is further refined to identify essential genes involved in crucial metabolic pathways of the pathogen and thus can be used as targets for treatment interventions. Functional annotation is carried out to elucidate the involvement of these proteins in important cellular processes, metabolic pathway, and subcellular location analyses are carried out for finding the probable cellular location of the candidate proteins in the cell. Proteins with certain physicochemical properties like favorable molecular weight, hydrophobicity, and pI are rendered fine drug …
引用总数
学术搜索中的文章
F Shahid, M Shehroz, T Zaheer, A Ali - Front. Anti-Infect. Drug Discov, 2020