作者
Jiqing Jiao, Rui Lin, Shoujie Liu, Weng-Chon Cheong, Chao Zhang, Zheng Chen, Yuan Pan, Jianguo Tang, Konglin Wu, Sung-Fu Hung, Hao Ming Chen, Lirong Zheng, Qi Lu, Xuan Yang, Bingjun Xu, Hai Xiao, Jun Li, Dingsheng Wang, Qing Peng, Chen Chen, Yadong Li
发表日期
2019/3
期刊
Nature chemistry
卷号
11
期号
3
页码范围
222-228
出版商
Nature Publishing Group UK
简介
The electrochemical reduction of CO2 could play an important role in addressing climate-change issues and global energy demands as part of a carbon-neutral energy cycle. Single-atom catalysts can display outstanding electrocatalytic performance; however, given their single-site nature they are usually only amenable to reactions that involve single molecules. For processes that involve multiple molecules, improved catalytic properties could be achieved through the development of atomically dispersed catalysts with higher complexities. Here we report a catalyst that features two adjacent copper atoms, which we call an ‘atom-pair catalyst’, that work together to carry out the critical bimolecular step in CO2 reduction. The atom-pair catalyst features stable Cu10–Cu1x+ pair structures, with Cu1x+ adsorbing H2O and the neighbouring Cu10 adsorbing CO2, which thereby promotes CO2 activation. This results in a …
引用总数
201920202021202220232024218813015012876