作者
Huban Kutay, Corie Klepper, Bo Wang, Shu-hao Hsu, Jharna Datta, Lianbo Yu, Xiaoli Zhang, Sarmila Majumder, Tasneem Motiwala, Nuzhat Khan, Martha Belury, Craig McClain, Samson Jacob, Kalpana Ghoshal
发表日期
2012/8/8
期刊
PloS one
卷号
7
期号
8
页码范围
e41949
出版商
Public Library of Science
简介
Background
Methylation at C-5 (5-mdC) of CpG base pairs, the most abundant epigenetic modification of DNA, is catalyzed by 3 essential DNA methyltransferases (Dnmt1, Dnmt3a and Dnmt3b). Aberrations in DNA methylation and Dnmts are linked to different diseases including cancer. However, their role in alcoholic liver disease (ALD) has not been elucidated.
Methodology/Principal Findings
Dnmt1 wild type (Dnmt1+/+) and hypomorphic (Dnmt1N/+) male mice that express reduced level of Dnmt1 were fed Lieber-DeCarli liquid diet containing ethanol for 6 weeks. Control mice were pair-fed calorie-matched alcohol-free liquid diet, and Dnmtase activity, 5-mdC content, gene expression profile and liver histopathology were evaluated. Ethanol feeding caused pronounced decrease in hepatic Dnmtase activity in Dnmt1+/+ mice due to decrease in Dnmt1 and Dnmt3b protein levels and upregulation of miR-148 and miR-152 that target both Dnmt1 and Dnmt3b. Microarray and qPCR analysis showed that the genes involved in lipid, xenobiotic and glutathione metabolism, mitochondrial function and cell proliferation were dysregulated in the wild type mice fed alcohol. Surprisingly, Dnmt1N/+ mice were less susceptible to alcoholic steatosis compared to Dnmt1+/+ mice. Expression of several key genes involved in alcohol (Aldh3b1), lipid (Ppara, Lepr, Vldlr, Agpat9) and xenobiotic (Cyp39a1) metabolism, and oxidative stress (Mt-1, Fmo3) were significantly (P<0.05) altered in Dnmt1N/+ mice relative to the wild type mice fed alcohol diet. However, CpG islands encompassing the promoter regions of Agpat9, Lepr, Mt1 and …
引用总数
20132014201520162017201820192020202120222023202416321212242