作者
Basil Saied, Ahmed Jadaan Ali
发表日期
2013
期刊
Progress In Electromagnetics Research B
卷号
53
页码范围
291-314
出版商
EMW Publishing
简介
The paper aims to investigate the use of the Finite Element Method for electrical and mechanical faults detection in three-phase squirrel cage, induction machines. The features of Finite Element Method are significant, which consider the physical mapping of stator winding and rotor bar distribution. Therefore, modeling of the faults in stator winding, rotor bars and air-gap eccentricity will be predicated in more accurate way. In comparison with conventional methods such as coupling method, the Finite Element Method considers the complex machine geometry, material type of the bar, current and the flux distributions within the electrical machines. As a result, the air-gap eccentricity and the broken bars can be modeled effectively using this approach. Motor current signature analysis has been used to give a decision about the fault occurrence. For the broken rotor bar, frequency of the sideband components around the fundamental is used to indicate the presence of fault. However, the sideband frequencies cannot be used to recognize the stator winding short circuit and eccentricities faults, where the harmonics have approximately the same frequency over the spectrum. The amplitude of the sideband harmonic components have been used to differentiate between them. It has been found that the inter-turn short circuit faults have a sideband harmonic component with amplitude greater than that in the case of the air-gap eccentricity faults. Also current paper introduce the detection of broken rotor bars based on stator current envelope technique.
引用总数
201520162017201820192020202120222023313113
学术搜索中的文章