作者
Luca Menilli, Ana R Monteiro, Silvia Lazzarotto, Filipe MP Morais, Ana TPC Gomes, Nuno MM Moura, Sara Fateixa, Maria AF Faustino, Maria GPMS Neves, Tito Trindade, Giorgia Miolo
发表日期
2021/9/18
期刊
Pharmaceutics
卷号
13
期号
9
页码范围
1512
出版商
MDPI
简介
The development of new photodynamic therapy (PDT) agents designed for bladder cancer (BC) treatments is of utmost importance to prevent its recurrence and progression towards more invasive forms. Here, three different porphyrinic photosensitizers (PS) (TMPyP, Zn-TMPyP, and P1-C5) were non-covalently loaded onto graphene oxide (GO) or graphene quantum dots (GQDs) in a one-step process. The cytotoxic effects of the free PS and of the corresponding hybrids were compared upon blue (BL) and red-light (RL) exposure on T24 human BC cells. In addition, intracellular reactive oxygen species (ROS) and singlet oxygen generation were measured. TMPyP and Zn-TMPyP showed higher efficiency under BL (IC50: 0.42 and 0.22 μm, respectively), while P1-C5 was more active under RL (IC50: 0.14 μm). In general, these PS could induce apoptotic cell death through lysosomes damage. The in vitro photosensitizing activity of the PS was not compromised after their immobilization onto graphene-based nanomaterials, with Zn-TMPyP@GQDs being the most promising hybrid system under RL (IC50: 0.37 μg/mL). Overall, our data confirm that GO and GQDs may represent valid platforms for PS delivery, without altering their performance for PDT on BC cells.
引用总数
20212022202320242883