作者
Wei Wang, Qiang Wu, Rui Sun, Jing Guo, Yao Wu, Mumin Shi, Wenyan Yang, Hongneng Li, Jie Min
发表日期
2020/5/20
期刊
Joule
卷号
4
期号
5
页码范围
1070-1086
出版商
Elsevier
简介
Recent advances in the development of polymer acceptors and the investigation of molecular mass have boosted the power conversion efficiency (PCE) of all-polymer solar cells (all-PSCs) to approximately 11%. Here, a fused-aromatic-ring-constructed polymer acceptor PYT (Poly[(2,2′-((2Z,2′Z)-((12,13-bis(2-octyldodecyl)-3,9-diundecyl-12,13-dihydro[1,2,5]thiadiazolo[3,4e]thieno[2″,3″:4′,5′]thieno[2′,3′:4,5]pyrrolo[3,2-g]thieno[2′,3′:4,5]thieno[3,2-b]-indole-2,10-diyl)bis(methanylylidene))bis(3-oxo-2,3-dihydro-1H-indene-2,1-diylidene)) dimalononitrile-alt-2,5-thiophene)]) is reported, while a series of PYT polymers with different molecular masses (designated as PYTL, PYTM, and PYTH) are prepared to fine-tune the molecular crystallinity and miscibility. Benefiting from the advantages of PYT series, which possess broad absorption with a narrow band of 1.40–1.44 eV and high absorption coefficients of …
引用总数