作者
Jian Liu, Dabbu Kumar Jaijyan, Qiyi Tang, Hua Zhu
发表日期
2019/9/10
来源
International journal of molecular sciences
卷号
20
期号
18
页码范围
4457
出版商
MDPI
简介
Vaccination has had great success in combating diseases, especially infectious diseases. However, traditional vaccination strategies are ineffective for several life-threatening diseases, including acquired immunodeficiency syndrome (AIDS), tuberculosis, malaria, and cancer. Viral vaccine vectors represent a promising strategy because they can efficiently deliver foreign genes and enhance antigen presentation in vivo. However, several limitations, including pre-existing immunity and packaging capacity, block the application of viral vectors. Cytomegalovirus (CMV) has been demonstrated as a new type of viral vector with additional advantages. CMV could systematically elicit and maintain high frequencies of effector memory T cells through the “memory inflation” mechanism. Studies have shown that CMV can be genetically modified to induce distinct patterns of CD8+ T-cell responses, while some unconventional CD8+ T-cell responses are rarely induced through conventional vaccine strategies. CMV has been used as a vaccine vector to deliver many disease-specific antigens, and the efficacy of these vaccines was tested in different animal models. Promising results demonstrated that the robust and unconventional T-cell responses elicited by the CMV-based vaccine vector are essential to control these diseases. These accumulated data and evidence strongly suggest that a CMV-based vaccine vector represents a promising approach to develop novel prophylactic and therapeutic vaccines against some epidemic pathogens and tumors.
引用总数
2019202020212022202320242934133
学术搜索中的文章