作者
Sophie J Bradley, Colin Molloy, Paulina Valuskova, Louis Dwomoh, Miriam Scarpa, Mario Rossi, Lisa Finlayson, Kjell A Svensson, Eyassu Chernet, Vanessa N Barth, Karolina Gherbi, David A Sykes, Caroline A Wilson, Rajendra Mistry, Patrick M Sexton, Arthur Christopoulos, Adrian J Mogg, Elizabeth M Rosethorne, Shuzo Sakata, RA John Challiss, Lisa M Broad, Andrew B Tobin
发表日期
2020/3
期刊
Nature chemical biology
卷号
16
期号
3
页码范围
240-249
出版商
Nature Publishing Group US
简介
Cholinesterase inhibitors, the current frontline symptomatic treatment for Alzheimer’s disease (AD), are associated with low efficacy and adverse effects. M1 muscarinic acetylcholine receptors (M1 mAChRs) represent a potential alternate therapeutic target; however, drug discovery programs focused on this G protein-coupled receptor (GPCR) have failed, largely due to cholinergic adverse responses. Employing novel chemogenetic and phosphorylation-deficient, G protein-biased, mouse models, paired with a toolbox of probe molecules, we establish previously unappreciated pharmacologically targetable M1 mAChR neurological processes, including anxiety-like behaviors and hyper-locomotion. By mapping the upstream signaling pathways regulating these responses, we determine the importance of receptor phosphorylation-dependent signaling in driving clinically relevant outcomes and in controlling adverse …
引用总数
202020212022202320245131392
学术搜索中的文章